GUIDED PRACTICE

Vocabulary Check

Concept Check

1. What is a zero of a function y = f(x)?

2. In Example 2, how do you know that m and n must be negative factors of 10?

3. ERROR ANALYSIS A student solved $x^2 + 4x + 3 = 8$ as shown. Explain the student's mistake. Then solve the equation correctly.

$$x^{2} + 4x + 3 = 8$$

 $(x + 3)(x + 1) = 8$
 $x + 3 = 8 \text{ or } x + 1 = 8$
 $x = 5 \text{ or } x = 7$

Exa

Exa

Exa

Exa

Exa

Exa

Exa

Exa

Skill Check V

Factor the expression.

4.
$$x^2 - x - 2$$

7. $y^2 + 2y + 1$

5.
$$2x^2 + x - 3$$

8.
$$p^2 - 4p + 4$$

6.
$$x^2 - 16$$

9. $q^2 + q$

$$p^2 - 4p + 4$$

Solve the equation.

10.
$$(x+3)(x-1)=0$$

11.
$$x^2 - 2x - 8 = 0$$

12.
$$3x^2 + 10x + 3 = 0$$

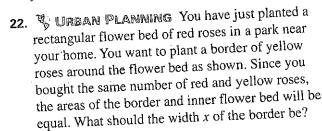
13.
$$4u^2 - 1 = 0$$

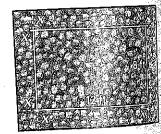
14.
$$v^2 - 14v = -49$$

15.
$$5w^2 = 30w$$

Write the quadratic function in intercept form and give the function's zeros.

16.
$$y = x^2 - 6x + 5$$


$$17. y = x^2 + 6x + 8$$


18.
$$y = x^2 - 1$$

19.
$$y = x^2 + 10x + 25$$

20.
$$y = 2x^2 - 2x - 24$$

21.
$$y = 3x^2 - 8x + 4$$

Practice and Applications

Extra Practice to help you master skills is on p. 945.

FACTORING x^2+bx+c Factor the trinomial. If the trinomial cannot be factored, say so.

23.
$$x^2 + 5x + 4$$

24.
$$x^2 + 9x + 14$$

25.
$$x^2 + 13x + 40$$

26.
$$x^2 - 4x + 3$$

27.
$$x^2 - 8x + 12$$

28.
$$x^2 - 16x + 51$$

29.
$$a^2 + 3a - 10$$

30.
$$b^2 + 6b - 27$$

31.
$$c^2 + 2c - 80$$

32.
$$p^2 - 5p - 6$$

33.
$$q^2 - 7q - 10$$

34.
$$r^2 - 14r - 72$$

FACTORING ax^2+bx+c Factor the trinomial. If the trinomial cannot be factored, say so.

35.
$$2x^2 + 7x + 3$$

36.
$$3x^2 + 17x + 10$$

37.
$$8x^2 + 18x + 9$$

38.
$$5x^2 - 7x + 2$$

39.
$$6x^2 - 9x + 5$$

40.
$$10x^2 - 19x + 6$$

41.
$$3k^2 + 32k - 11$$

42.
$$11m^2 + 14m - 16$$

43.
$$18n^2 + 9n - 14$$

44.
$$7u^2 - 4u - 3$$

45.
$$12v^2 - 25v - 7$$

46.
$$4w^2 - 13w - 27$$

> HOWEWORK HELP

Example 1: Exs. 23-34

Example 2: Exs. 35-46

Example 3: Exs. 47-55

Example 4: Exs. 56-64

Example 5: Exs. 65-79 Example 6: Exs. 90, 91,

Example 7: Exs. 80-88

Example 8: Exs. 99-101

97, 98

+3 = 0

zeroš.

$$8x + 4$$

it be

80

- 72

ot be

+9

FACTORING WITH SPECIAL PATTERNS Factor the expression.

47.
$$x^2 - 25$$

48.
$$x^2 + 4x + 4$$

49.
$$x^2 - 6x + 9$$

50.
$$4r^2 - 4r + 1$$

51.
$$9s^2 + 12s + 4$$

52.
$$16t^2 - 9$$

53.
$$49 - 100a^2$$

54.
$$25b^2 - 60b + 36$$

55.
$$81c^2 + 198c + 121$$

FACTORING MONOMIALS FIRST Factor the expression.

56.
$$5x^2 + 5x - 10$$

57.
$$18x^2 - 2$$

58.
$$3x^2 + 54x + 243$$

59.
$$8y^2 - 28y - 60$$

60.
$$112a^2 - 168a + 63$$

61.
$$u^2 + 7u$$

62.
$$6t^2 - 36t$$

63.
$$-v^2 + 2v - 1$$

64.
$$2d^2 + 12d - 16$$

EQUATIONS IN STANDARD FORM Solve the equation.

65.
$$x^2 - 3x - 4 = 0$$

66.
$$x^2 + 19x + 88 = 0$$

67.
$$5x^2 - 13x + 6 = 0$$

68.
$$8x^2 - 6x - 5 = 0$$

69.
$$k^2 + 24k + 144 = 0$$

70.
$$9m^2 - 30m + 25 = 0$$

71.
$$81n^2 - 16 = 0$$

72.
$$40a^2 + 4a = 0$$

73.
$$-3b^2 + 3b + 90 = 0$$

EQUATIONS NOT IN STANDARD FORM Solve the equation.

74.
$$x^2 + 9x = -20$$

75.
$$16x^2 = 8x - 1$$

76.
$$5p^2 - 25 = 4p^2 + 24$$

77.
$$2y^2 - 4y - 8 = -y^2 + y$$

78.
$$2q^2 + 4q - 1 = 7q^2 - 7q + 1$$

79.
$$(w+6)^2 = 3(w+12) - w^2$$

FINDING ZEROS Write the quadratic function in intercept form and give the function's zeros.

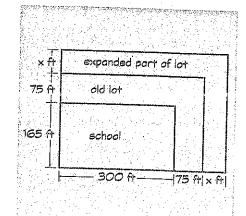
80.
$$y = x^2 - 3x + 2$$

81.
$$y = x^2 + 7x + 12$$

82.
$$y = x^2 + 2x - 35$$

83.
$$y = x^2 - 4$$

83.
$$y = x^2 - 4$$
 84. $y = x^2 + 20x + 100$


85.
$$y = x^2 - 3x$$

86.
$$y = 3x^2 - 12x - 15$$
 87. $y = -x^2 + 16x - 64$ **88.** $y = 2x^2 - 9x + 4$

87.
$$y = -x^2 + 16x - 6x$$

88.
$$v = 2x^2 - 9x + 4$$

- 89. LOGICAL REASONING Is there a formula for factoring the sum of two squares? You will investigate this question in parts (a) and (b).
 - **a.** Consider the sum of squares $x^2 + 9$. If this sum can be factored, then there are integers m and n such that $x^2 + 9 = (x + m)(x + n)$. Write two equations relating the sum and the product of m and n to the coefficients in $x^2 + 9$.
 - **b.** Show that there are no integers m and n that satisfy both equations you wrote in part (a). What can you conclude?
- 90. S QUILTING You have made a quilt that is 4 feet by 5 feet. You want to use the remaining 10 square feet of fabric to add a decorative border of uniform width. What should the width of the border be?
- 91. S CONSTRUCTION A high school wants to double the size of its parking lot by expanding the existing lot as shown. By what distance x should the lot be expanded?

