Solving Systems of Equations Word Problems - Answers

Part A

1. $y=a x^{2}+b x+c$
$A V=B$
$\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{r}2 \\ -2 \\ 0\end{array}\right]$

$$
y=3 x^{2}-x-2
$$

2. Same general setup as \#1. $y=-\frac{1}{2} x^{2}+\frac{11}{30} x+5$ Quad formula or wo calc. functions hits at 103.7^{\prime} and max neight 13.4^{\prime}
3. Similar setup to \#s 1 \& 2, with 4 variables: $y=3 x^{3}-x^{2}+2 x-5$
4. Same general setup as \#s 1 \& 2:

$$
\begin{aligned}
& y=-3.1 x^{2}+57.1 x-218.9 \\
& 2002: t=12 ; y(12)=\$ 19.90
\end{aligned}
$$

Part B

1. Let $\mathrm{t}=$ number of touchdowns, $\mathrm{e}=$ number of extra-point kicks, $\mathrm{f}=$ number of field goals

$$
\left\{\begin{aligned}
t+e+f & =11 \\
6 t+e+3 f & =39 \\
t-f & =0
\end{aligned} \quad \text { There were } 4 \text { touchdowns, } 3 \text { extra-point kicks, and } 4\right. \text { field goals. }
$$

2. Let $W=$ speed of Watusi, $U=$ speed of Ubangi, and $P=$ speed of Pigmy

$$
\left\{\begin{array}{cl}
W+U+P=30 & \\
\frac{1}{3} W-U+P=22 & \text { The Watusi runs } 12 \mathrm{mph} \text { and the Pigmy runs } 18 \mathrm{mph} . \text { It's unfortunate that the } \\
4 W+3 U-2 P=12 & \text { Ubangi can't run } 0 \mathrm{mph}) .
\end{array}\right.
$$

