

SSS PROOF :

CPCTC PROOF *

Given: $\overline{P Q} \cong \overline{S T}, \overline{Q R} \cong \overline{T R}, R$ is the midpoint of $\overline{P S}$
prove: $\triangle P Q R \cong \triangle S T R$

Statements	Reasons

$\overline{P Q} \cong \overline{S T}$
Def. of Midpoint
$\overline{Q R} \cong \overline{T R}$

Given
$\overline{P R} \cong \overline{S R}$

\square

CPCTC PROOF :3

Given: $\overline{A C}$ bisects $\angle B C D, \angle A B C \cong \angle A D C$
Prove: $\overline{A B} \cong \overline{A D}$

Statements	Reasons

SSS PROOF 2

Given: L is the midpoint of $\overline{J N}, \overline{J M} \cong \overline{N M}$,
prove: $\triangle J L M \cong \triangle N L M$

statements	Reasons

SAS PROOF :

Given: $\quad x$ is the midpoint of $\overline{Z Z}, x$ is the midpoint of $\overline{W Y}$
prove: $\triangle V W X \cong \triangle Z Y X$

Statements	Reasons

Def. of Midpoint
Def. of Midpoint

Vertical Angles
X is the midpoint of $\overline{V Z}$
Given
$\overline{V X} \cong \overline{X Z}$
X is the midpoint of $\overline{W Y}$

Given

CPCTC PROOF 히

Given: $\quad x$ is the midpoint of $\overline{V Z}, x$ is the midpoint of $\overline{W Y}$
prove: $\angle X V W \cong \angle X Z Y$

Statements	Reasons

Given
Def. of Midpoint

```
VX \cong\overline{ZX}
```

Def. of Midpoint
$\angle X V W \cong \angle X Z Y$
x is the midpoint of $\overline{V Z}$

```
                                Given
```

$\triangle V W X \cong \triangle Z Y X$
$\overline{W X} \cong \overline{Y X}$
Vertical Angles

11

SAS PROOF *2

Given: $\overline{X W} \cong \overline{X Y}, \overline{X Z}$ bisects $\angle W X Y$
prove: $\triangle W X Z \cong \triangle Y X Z$

statements	Reasons

ASA PROOF w

HL PROOF *2

Given: $\overline{Q R}$ bisects $\angle P Q S, \angle P R Q \cong \angle S R Q$
prove: $\triangle P Q R \cong \triangle S Q R$

Statements	Reasons

$\overline{Q R} \cong \overline{Q R}$
Given
$\angle P Q R \cong \angle S Q R$

Def. of Angle Bisector
$\overline{Q R}$ bisects $\angle P Q S$
Reflexive Property
$\angle P R Q \cong \angle S R Q$

5
ASA
$\Delta P Q R \cong \triangle S Q R$
Given: $\overline{P R} \perp \overline{S Q}, \overline{P Q} \cong \overline{P S}$
prove: $\triangle P R Q \cong \triangle P R S$

Statements	Reasons

AAS PROOF का

AAS PROOF 2

Given: $\overline{S R}$ bisects $\angle Q S T, \angle S Q R \cong \angle S T R$
Prove: $\triangle Q S R \cong \triangle T S R$

Statements	Reasons

$\angle Q S R \cong \angle T S R$
Reflexive Property
Given
$\triangle Q S R \cong \triangle T S R$
$\overline{S R}$ bisects $\angle Q S T$

Def. of Angle Bisector
$\overline{S R} \cong \overline{S R}$
©

HL PROOF :

Given: $\quad \triangle Q S R$ and $\triangle T S R$ are right triangles, $\overline{Q S} \cong \overline{T S}$
Prove: $\triangle Q S R \cong \triangle T S R$

ASA PROOF \%2

Given: $\overline{A C}$ bisects $\angle B A D, \overline{A C}$ bisects $\angle B C D$
prove: $\triangle B A C \cong \triangle D A C$

Statements	Reasons

$\overline{Q S} \cong \overline{T S}$

HL

\square Given

