\qquad Date \qquad

Day 1 - Translations, Reflections, and Rotations

There are many different ways to move a figure on the coordinate plane. Some movements keep the figure the same size and some may make the figure bigger or smaller. These "movements" are called transformations. Transformations are the mapping or movement of all the points in a figure on the coordinate plane.

When a figure is the original figure, it is called the pre-image. The prefix "pre" means \qquad . In the above picture, we would label the points as A, B, and C.

When a figure has been transformed, it is called the image. We would label the new points as A^{\prime}, B^{\prime}, and C^{\prime}. We would say that points A, B, and C have been mapped to the new points A^{\prime}, B^{\prime}, and C^{\prime}

Exploring Translations

A. Graph triangle $A B C$ by plotting points $A(8,10), B(1,2)$, and $C(8,2)$.
B. Translate triangle $A B C 10$ units to the left to form triangle $A^{\prime} B^{\prime} C^{\prime}$ and write new coordinates.
C. Translate triangle $A B C 12$ units down to form triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ and write new coordinates.

Coordinates of Triangle ABC	Coordinates of Triangle $A^{\prime} B^{\prime} C^{\prime}$	Coordinates of Triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$
A $(8,10)$		
B $(1,2)$		
$C(8,2))$		

Observation: Did the figures change
size or shape after each transformation?

You observed that your four triangles maintained the same shape and size. When a figure keeps the same size and shape, it is called a rigid transformation.

With your experiment, you were performing a translation. A translation is a slide that maps all points of a figure the same distance in the same direction. A translation can slide a figure horizontally, vertically, or both.

Practice with Translations

Name the rule for the given figures:

Practice

1. Translate the image by $(x-8, y+2)$
2. Translate the image by $(2 x+2, y-3)$
$\mathrm{A}(-2,4) \rightarrow \mathrm{A}^{\prime}$ \qquad
$\mathrm{B}(0,-8) \rightarrow \mathrm{B}^{\prime}$ \qquad
$C(-3,5) \rightarrow C^{\prime}$ \qquad
$D(1,2) \rightarrow \quad D^{\prime}$ \qquad
$E(-3,-5) \rightarrow E$ \qquad
$F(4,-1) \rightarrow F^{\prime}$ \qquad
3. Find the pre-image
$(x+12, y-17)$
$G \longrightarrow \quad \rightarrow \quad G^{\prime}(5,-29)$
H \qquad $\rightarrow \mathrm{H}^{\prime}(20,-19)$
I \qquad \rightarrow I' $(21,-4)$

Reflections and Rotations

Figures that are mirror images of each other are called reflections. A reflection is a transformation that "flips" a figure over a reflection line. A reflection line is a line that acts as a mirror so that corresponding points are the same distance from the mirror. Reflections maintain shape and size; they are our second type of rigid transformation.

Reflection over y-axis

Reflect parallelogram $A B C D$ over the y-axis using reflection lines. Record the points in the table.

	Pre-Image	Image
A		
B		
C		
D		
Rule	(x, y)	

Reflection over x -axis

Reflect parallelogram $A B C D$ over the x-axis using reflection lines. Record the points in the table

	Pre-Image	Image
A		
B		
C		
D		
Rule	(x, y)	

Reflection over $\mathbf{y}=\mathbf{x}$

Reflect the triangle over the $y=x$ using reflection lines. Record the points in the table

	Pre-Image	Image
A		
B		
C		
Rule	(x, y)	

Reflection over $y=-x$

Reflect triangle $A B C$ over the $y=-x$ using reflection lines. Record the points in the table

	Pre-Image	Image
A		
B		
C		
Rule	(x, y)	

Reflection over Horizontal and Vertical Lines

Practice with Reflections

Given triangle MNP with vertices of $M(1,2), N(1,4)$, and $P(3,3)$, reflect across the following lines of reflection:

($\mathbf{x}, \mathbf{y}) \rightarrow$-axis			
$M(1,2) \rightarrow$	y-axis $(\mathbf{x}, \mathbf{y}) \rightarrow$	$\mathbf{y = x}$ $(\mathbf{x}, \mathbf{y}) \rightarrow$	$\mathrm{M}(1,2) \rightarrow$

Rotations

A rotation is a circular movement around a central point that stays fixed and everything else moves around that point in a circle. A rotation maintains size and shape; therefore, it is our third type of rigid transformation. When we rotate our figures around a fixed point, we classify our rotation by direction and degree of rotation.

Degrees of Rotation

Direction of Rotation

90° clockwise

180° clockwise

270° clockwise

360° clockwise

It is important to understand that some rotations are the same depending on the degree and direction of the rotation. Most of the time, rotations are given using counterclockwise direction. Here are equivalent rotations:

$$
90^{\circ} \text { Counterclockwise }=270^{\circ} \text { Clockwise } \quad 90^{\circ} \text { Clockwise }=270^{\circ} \text { Counterclockwise }
$$

180° Counterclockwise $=180^{\circ}$ Clockwise

Rules for Rotations

Practice with Rotations

c. Rotate $90^{\circ} \mathrm{CW}$

Lines of Symmetry

A line of symmetry is a line you can use to fold a figure so that both halves match up perfectly. This means the figure is symmetrical (balanced/matching) on both sides of the line.

Example: How many lines of symmetry does each shape have?

