Name \qquad Date \qquad

Day 1 - Proving All Parallelograms

Steps to Coordinate Proofs:

1. Plot the points.
2. Look for key words to determine whether to use the distance formula or slope formula.

- Parallel, Perpendicular, Right Angles - Use \qquad
- Congruent Sides - Use \qquad

Example 1: The coordinates of triangle $\mathbf{B C D}$ are $\mathbf{B}(\mathbf{4}, \mathbf{2}), \mathbf{C}(\mathbf{0}, \mathbf{2})$, and $\mathbf{D}(\mathbf{2}, 4)$.
Prove that the triangle is an isosceles triangle.

1. What is the question asking you about?

Parallel OR Perpendicular OR Distance
2. $\mathrm{BC}=$
$C D=$
DB=
3. Is triangle $B C D$ isosceles? How do you know?

Example 2: Triangle $A B C$ has coordinates $\mathbf{A}(-1,3), \mathbf{B}(5,5)$, and $\mathbf{C}(4,-2)$.
Prove that the triangle is an equilateral triangle.

1. What is the question asking you about?

Parallel OR Perpendicular OR Distance
2. $\mathrm{AB}=$
$B C=$
$C A=$
3. Is triangle ABC equilateral? How do you know?

Example 3: A rectangle has two pairs of opposite sides that are congruent.
Quadrilateral MIKE has vertices $\mathbf{M}(4,1), I(6,4), K(12,0)$, and $E(10,-3)$. Prove that Quadrilateral MIKE is a rectangle.

1. What is the question asking you about?

Parallel OR Perpendicular OR Distance
2. $\mathrm{MI}=$
$\mathrm{IK}=$
KE=
EM=
3. Is MIKE a rectangle? How do you know?

Example 3b: A rectangle has 4 right angles.

Quadrilateral MIKE has vertices $\mathbf{M}(4,1), I(6,4), K(12,0)$, and $E(10,-3)$. Prove that Quadrilateral MIKE is a rectangle.

1. What is the question asking you about?

Parallel OR Perpendicular OR Distance
2. $\mathrm{MI}=$
$\mathrm{IK}=$
$K E=$
EM=

3. Is MIKE a rectangle? How do you know?

Example 4: A square has four congruent sides.

Quadrilateral DIAN has vertices $\mathbf{D}(\mathbf{0}, 5), \mathrm{I}(3,6), \mathbf{A}(4,3)$ and $\mathbf{N}(\mathbf{1 , 2})$. Prove that Quadrilateral DIAN is a square.

1. What is the question asking you about?

Parallel OR Perpendicular OR Distance
2. $\mathrm{DI}=$
$\mid A=$
AN=
$\mathrm{ND}=$

3. Is DIAN a square? How do you know?

Example 4b: A rhombus has perpendicular diagonals.

Quadrilateral DIAN has vertices $\mathbf{D}(\mathbf{0}, \mathbf{5}), \mathrm{I}(\mathbf{3}, \mathbf{6}), \mathbf{A}(\mathbf{4}, \mathbf{3})$ and $\mathbf{N}(\mathbf{1}, \mathbf{2})$. Prove that Quadrilateral DIAN is a rhombus.

1. What is the question asking you about?

Parallel OR Perpendicular OR Distance
2. $D A=$
$\mathrm{IN}=$

3. Is DIAN a rhombus? How do you know?

