Day 3 – Compound Probability: Mutually Exclusive vs. Overlapping

Determine if the following events are mutually exclusive or overlapping.

- 1. The experiment is rolling a die. The 1st event: the number is greater than 3 The 2nd event: the number is even.
 - 2. The experiment is year in school. The 1st event: the person is a senior. The 2nd event: the person is a junior.
 - 3. The experiment is answering multiple choice questions. The 1st event: the correct answer is chosen The 2nd event: the answer A is chosen.
 - 4. The experiment is selecting a chocolate bar. The 1st event: the bar has nuts The 2nd event: the bar has caramel.
 - 5. One card is randomly drawn from a deck of 52 cards. The card is face down on the table. What is the probability of getting a Jack or a Spade?

	Standard	tandard Deck of 52 Playing Cards					
	Black	Black	Red	Red			
	A♠	A&	A♥	A♦			
	2♠	24	2♥	2♦			
	3♠	34	3♥	3♦			
	4♠	4&	4♥	4♦			
	54	54	5♥	5♦			
	64	64	6♥	6♦			
	7♠	74	7♥	7♦			
	84	84	8♥	8♦			
	9♠	94	9♥	9♦			
_	10♠	104	10♥	10♦			
Face Cards	Jack 📣	Jack 🌢	Jack 🛡	Jack 🔶			
	Queen 🌢	Queen 🌲	Queen 🛡	Queen ♦			
	King 🔺	King 🌢	King 🖤	King 🔶			

Use the general addition rule to compute the probability that if you roll two six-sided dice.

6. you get doubles or a sum of 4

7. you get doubles or a sum of 7

	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

8. you get a 5 on the first die or you get a 5 on the second die.

Use the Venn diagram to answer the following questions.

9. P(A) 10. P(B) 11. P(B)' 12. P(A ∪ B) 13. P(A ∩ B)

When you arrive home today, you find 27 cupcakes in a large circular plate. There are 13 that have icing, 11 have sprinkles, and 4 have both.

Use the data below to find each of the following probabilities.

Coolest Deals Sold at Ike's

Tonning choice	Ice cream choice					
1 opping choice	Vanilla	Chocolate	Cookie dough	Mint chip		
Sprinkles	9	12	16	14		
Hot fudge	11	4	16	15		
Caramel	10	12	18	15		

_____18. P(Chocolate)

- 19. P(Chocolate)'
- 20. P(Sprinkles \cap Cookie Dough)
- _____ 21. P(Caramel \cup Vanilla)