\qquad Date \qquad

Day 5 - Independent and Dependent Events

Independent Events

- Event A occurring does NOT affect the probability of Event B occurring.
- $P(A$ and $B)=P(A \cap B)=P(A) \bullet P(B)$

1. A coin is tossed and a 6 -sided die is rolled. Find the probability of landing on the head side of the coin and rolling a 3 on the die.
2. A card is chosen at random from a deck of 52 cards. It is then replaced and a second card is chosen. What is the probability of choosing a jack and an eight?
3. A jar contains 3 red, 5 green, 2 blue and 6 yellow marbles. A marble is chosen at random from the jar. After replacing it, a second marble is chosen. What is the probability of choosing a green and a yellow marble?
4. A school survey found that 9 out of 10 students like pizza. If three students are chosen at random with replacement, what is the probability that all three students like pizza?

Dependent Events

- Event A occurring AFFECTS the probability of Event B occurring.
- Usually you will see the words "WITHOUT REPLACING."
- $P(A$ and $B)=P(A \cap B)=P(A) \bullet P(B \mid A)$

5. A jar contains 3 red, 5 green, 2 blue and 6 yellow marbles. A marble is chosen at random from the jar. A second marble is chosen without replacing the first one. What is the probability of choosing a green and a yellow marble?
6. An aquarium contains 6 male goldfish and 4 female goldfish. You randomly select a fish from the tank, do not replace it, and then randomly select a second fish. What is the probability that both fish are male?
7. A random sample of parts coming off a machine is done by an inspector. He found that 5 out of 100 parts are bad on average. If he were to do a new sample, what is the probability that he picks a bad part and then, picks another bad part if he doesn't replace the first?

How to Determine If 2 Events Are Independent:

- Substitute in what you know in to $\mathbf{P}(\mathbf{A} \cap \mathbf{B})=\mathbf{P}(\mathbf{A}) \bullet \mathbf{P}(\mathbf{B})$ and check to see if left side equals right side.
- If it's equal, then it's independent.
- If it's not equal, then it's not independent (or dependent).

8. Let event $M=$ taking a math class. Let event S = taking a science class. Then, M and $S=$ taking a math class and a science class. Suppose $\mathbf{P}(\mathbf{M})=\mathbf{0 . 6}, \mathbf{P}(\mathbf{S})=\mathbf{0 . 5}$, and $\mathbf{P}(\mathbf{M}$ and $\mathbf{S})=\mathbf{0 . 3}$. Are \mathbf{M} and S independent?
9. In a class, 60% of the students are female. 50% of all students in the class have long hair. 45% of the students are female and have long hair. Of the female students, 75% have long hair. Let F be the event that the student is female. Let L be the event that the student has long hair. One student is picked randomly. Are the events of being female and having long hair independent?
