1. A student constructs the image of line segment $A B$ under a dilation with center O, not on the segment, with a scale factor of 3 . Which describes the image of the line segment?
A. The image of line segment $A B$ is a line segment parallel to $A B$
B. The image of line segment $A B$ is a line segment perpendicular to $A B$
C. The image of line segment $A B$ is a line segment passing through point O that intersects $A B$
D. The image of line segment $A B$ is a line segment passing through point O that leaves $A B$ unchanged
2. $A B$ with length 2.4 cm is dilated with a scale factor of 3 . What is the new length of $A B$?
A. 0.8 cm
B. 2.4 cm
C. 5.4 cm
D. 7.2 cm
3. A right triangle with hypotenuse 5 units and one leg 4 units is dilated with a scale factor of 2 . What is the length of the smallest side of the new triangle?
A. 3 units
B. 6 units
C. 8 units
D. 10 units
4. What is the scale factor of the dilation?
A. $7 / 4$
B. $4 / 7$
C. $7 / 5$
D. $5 / 7$

5. $\triangle N O P$ has side lengths of $5 \mathrm{~cm}, 7 \mathrm{~cm}$, and 9 cm . If $\triangle N O P \sim \triangle R S T$, which could be side lengths of $\triangle R S T$?
A. $1 \mathrm{~cm}, 3, \mathrm{~cm}, 5 \mathrm{~cm}$
B. $6 \mathrm{~cm}, 8.4 \mathrm{~cm}, 13.5 \mathrm{~cm}$
C. $7.5 \mathrm{~cm}, 10.5,13.5 \mathrm{~cm}$
D. $15 \mathrm{~cm}, 17 \mathrm{~cm}, 19 \mathrm{~cm}$
6. What scale factor could be used to dilate circle X to be congruent to circle Y ?
A. $4 / 3$
B. $3 / 4$
C. $3 / 5$
D. $2 / 1$

7. In the triangle to the right, what is the length of segment DF?
A. 9
B. 10
C. 12
D. 20

8. Select the 1 triangle that correctly completes the similarity statement? $\triangle A B C \sim \triangle$ \qquad
A. $\triangle \mathrm{ABD}$
B. $\triangle \mathrm{ADB}$
C. $\triangle \mathrm{BCD}$
D. $\triangle B C A$

9. Segment $B C$ is a midsegment and triangle $A D E$. Find the length of $B C$ if $B C=2 x+14$ and $D E=6 x-12$.
A. 7
B. 20
C. 28
D. 54

10. Given: $\triangle P Q R \sim \triangle X Y Z$.

What is the perimeter of $\triangle X Y Z$?
A. 21
B. 63
C. 105
D. 126

11. What additional information do you need to prove the two triangles are congruent by the SAS Postulate?
A. $\overline{A B} \cong \overline{A D}$
B. $\angle A B C \cong \angle A C D$
C. $\angle B C A \cong \angle D C A$
D. $\overline{B C} \cong \overline{D C}$

12. Which statement is TRUE?
A. $\triangle A B C \cong \triangle J L K$ by $H L$
B. $\triangle \mathrm{ABC} \cong \triangle J K L$ by $H L$
C. $\triangle A B C \cong \triangle J L K$ by SAS
D. $\triangle A B C \cong \triangle J K L$ by SSS

13. Heather is 1.6 meters tall and casts a shadow of 3.5 meters. A barn nearby casts a shadow of 17.5 meters. What is the height of the barn?
A. 5 m
B. 8 m
C. 14 m
D. 38 m
14. Given: A $(3,1), B(4,5), C(2,3), D(-1,-3), E(-5,-4), F(-3,-2)$

Which statement proves $\triangle A B C$ maps onto $\triangle D E F$?
A. Rotation: $(\mathbf{x}, \mathbf{y}) \rightarrow(\mathbf{y},-\mathbf{x})$, followed by a Reflection: $(\mathbf{x}, \mathbf{y}) \rightarrow \mathbf{(x , - y)}$.
B. Reflection: $(\mathbf{x}, \mathbf{y}) \rightarrow \mathbf{(- x , y)}$, followed by a Rotation: $(\mathbf{x}, \mathbf{y}) \rightarrow(\mathbf{y},-\mathbf{x})$.
C. Translation: $(\mathbf{x}, \mathbf{y}) \rightarrow \mathbf{(x - 4 ,} \mathbf{y})$, followed by a Translation: $(\mathbf{x}, \mathbf{y}) \rightarrow \mathbf{(x , y - 6)}$.
D. Rotation: $(\mathbf{x}, \mathbf{y}) \rightarrow \mathbf{(- y , x})$, followed by a Reflection: $(\mathbf{x}, \mathbf{y}) \rightarrow(\mathbf{x}, \mathbf{- y})$.
15. A pilot uses triangles to find the angle of elevation, $\angle A$ from the ground to her plane. If $m \angle C=40^{\circ}$, how can she find $m \angle A$?
A. $\triangle A B O \cong \triangle C D O$ by $S A S \& \angle A \cong \angle C$ by CPCTC,
so $m \angle A=40^{\circ}$ by substitution.
B. $\triangle A B O \cong \triangle C D O$ by $C P C T C ~ \& ~ \angle A \cong \angle C$ by $S A S$,
so $m \angle A=40^{\circ}$ by substitution.
C. $\triangle A B O \cong \triangle C D O$ by $A S A \& \angle A \cong \angle C$ by CPCTC,
so $m \angle A=40^{\circ}$ by substitution.
D. $\triangle A B O \cong \triangle C D O$ by CPCTC \& $\angle A \cong \angle C$ by ASA, so $m \angle A=40^{\circ}$ by substitution.

16. Point E is the midpoint of line segments $A C$ and $B D$. Which is the TRUE statement?
A. $\triangle A B E \cong \triangle C D E$ by ASA
B. $\triangle A B E \cong \triangle C D E$ by AAS
C. $\triangle A B E \cong \triangle C D E$ by $S A S$
D. $\triangle A B E \cong \triangle C D E$ by SSS

17. Use the figure to answer the question. Which is the TRUE statement?
A. $\Delta G J H \cong \Delta J H$ by SAS
B. $\Delta G J H \cong \Delta J H$ by HL
C. $\Delta G J H \cong \Delta J H$ by SSS
D. $\Delta G J H \cong \Delta H J I$ by $H L$

18. Two lines intersect to form two pairs of vertical angles: $\angle 1=(20 x+7)^{\circ} \& \angle 3=(5 x+7 y+49)$ are vertical angles. $\angle 2=(3 x-2 y+30)^{\circ} \& \angle 4$ are vertical angles. What are the values of x and y and the measure of $\angle 1 \& \angle 2$?
A. $x=6 ; y=10 ; m \angle 1=127^{\circ} ; m \angle 2=28$
B. $x=8 ; y=11 ; m \angle 1=167^{\circ} ; m \angle 2=13$
C. $x=5 ; y=5 ; m \angle 1=107^{\circ} ; m \angle 2=73$
D. $x=7 ; y=9 ; m \angle 1=147^{\circ} ; m \angle 2=33$
19. For two parallel lines and a transversal, $\angle 1$ and $\angle 2$ are same-side interior angles, $\angle 2$ and $\angle 3$ are vertical angles, $\angle 3$ and $\angle 4$ are alternate exterior angles. Which classification best describes the relationship between $\angle 2$ and $\angle 4$?
A. Adjacent
C. Alternate Interior
B. Corresponding
D. Vertical
20. What is $m \angle 1$? (Hint: Draw a line parallel to the given parallel lines.)
A. $m \angle 1=95$
B. $m \angle 1=80$
C. $m \angle 1=85$
D. $m \angle 1=75$
21. What is the length of $A B$?
A. 5
B. 15
C. 30
D. 70
22. Given: $B C=3 x-1$ and $X Y=2 x-3$.

What is the length of $X Y$?
A. 5 units
B. 7 units
C. 14 units
D. 28 units

27. Given quadrilateral $A B C D$ with $A B \cong C D ; B C \cong D A$, and $A C \cong B D$. Which of the following is correct concerning quadrilateral $A B C D$?
A. Opposite sides are congruent, so $A B C D$ is a parallelogram. Diagonals are congruent, so $A B C D$ is a rectangle. Two consecutive sides are not necessarily congruent, so ABCD is NOT a square.
B. Opposite sides are congruent, so $A B C D$ is a rhombus. Diagonals are congruent, so $A B C D$ is a rectangle. A quadrilateral that is a rhombus and a rectangle is a square, so $A B C D$ is a square.
C. Opposite sides are congruent, so $A B C D$ is a parallelogram. Diagonals are congruent, so $A B C D$ is a rhombus. One angle is not a right angle, so $A B C D$ is NOT a square.
D. The conclusion is valid without any more information needed. $A B C D$ is a square.
28. In quadrilateral $A B C D, A B \cong D C$ and $A D \cong B C$. Find the $m \angle D$.
A. 180°
B. 80°
C. 40°
D. 100°

29. Thinking Constructions: What is the first step to copy $A B$ onto the line?
A. Use a straightedge to draw $A B$ so it intersects the other line.
B. Open a compass to the distance of $A B$.

A
C. Use a ruler to measure $A B$.
D. Use a straightedge to draw $A B$.
30. Which step should be first to construct a line perpendicular to HJ at point J?
A. Place the compass on point H, set its width to less than $H J$, draw two arcs on both sides of H.
B. Place the compass on point J, set its width to less than HJ , draw two arcs on both sides of J.
C. Place the compass on point J, set its width to less than HI , draw a circle that will intersect the segment in two places.
D. Place the compass on point J, set its width to more than JI ,
 draw a circle around the segment HI.
31. What is the first step when inscribing a regular hexagon in the circle?
A. Set the compass to any distance. Then place the point of the compass at A and draw an arc that passes through any point on the circle.
B. Place the point of the compass at any point on the circle \& draw an arc that passes through point A.
C. Open the compass to the radius of the circle.
D. Draw the diameter of the circle.

32. Given $\triangle P Q R \cong \triangle X Y Z$, which statement is NOT true?
A. $P R \cong X Z$
B. $Y Z \cong Q R$
C. $R Q \cong Z X$
D. $Z Y \cong R Q$
33. Triangle $B C D$ has been dilated to create triangle $B^{\prime} C^{\prime} D^{\prime}$.
(NOTE: Your teacher will score your response to this question using a 2-point rubric.)

- Part A: What is the scale factor that created $\Delta B^{\prime} C^{\prime} D^{\prime}$?
- Part B: What is the similarity ratio of the areas from the pre - image to the image?

